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ABSTRACT

Usually, noise is considered to be destructive. We present
a new method that constructively injects noise to assess the
reliability and the group structure of empirical ICA com-
ponents. Simulations show that the true root-mean squared
angle distances between the real sources and some source
estimates can be approximated by our method. In a toy ex-
periment, we see that we are also able to reveal the under-
lying group structure of extracted ICA components. Fur-
thermore, an experiment with fetal ECG data demonstrates
that our approach is useful for exploratory data analysis of
real-world data.

1. INTRODUCTION

In order to apply unsupervised learning algorithms to real-
world problems it is of fundamental importance to deter-
mine how trustworthy their results are.

Recently, Meinecke et al. [11, 10] proposed a bootstrap
resampling method that estimates the reliability and group-
ing of independent components found by algorithms for in-
dependent component analysis (abr. ICA, see [4, 1, 7]). This
method profits from the well-developed theory of bootstrap
(see [5]). However, it is not straightforward for all exist-
ing ICA algorithms how to define a resampling strategy that
preserves the statistical structure relevant to the considered
ICA algorithm.

Our approach refers to the inherent ideas of ICA algo-
rithms: according to Cardoso’s three easy routes (see [2])
the statistical structure relevant for ICA algorithms are non-
Gaussianity, non-whiteness and non-stationarity. Our meth-
od partially destroys this structure by corrupting the data
with stationary white Gaussian noise. The motivation for
this is, that we expect reliable components to be extracted
even if they have lost some of their structure.

ICA models multivariate time-series

x(t) = [x1(t), . . . , xn(t)]>

as a linear combination,

x(t) = As(t),

of statistically independent source signals

s(t) = [s1(t), . . . , sn(t)]>.

An algorithm for ICA estimates a mixing matrix A only
from the observed signal x(t). Therefore, the true sources—
or equivalently the columns of the mixing matrix A—can be
estimated at best up to permutation and scaling.

In this paper, reliability of an estimated source is mea-
sured as the stability of its direction with respect to noise,
i.e. to a fading-out of the marginal non-properties: non-
Gaussianity, non-whiteness and non-stationarity. Two or
more unreliable components might span a reliable subspace
which can be stable and thus reliably separated from other
components. E.g. a rotational invariant distribution might
form such a subspace, since it could be well-defined but
there is no preferred ICA basis inside (see our toy example
or [11]).

2. ALGORITHM

Real-world signals are usually given as a multivariate time-
series x(t) comprising of n components each of length T ,
which we represent as an n × T matrix,

X = [x(1) · · ·x(T )].

We assume that all signals have mean zero. The ICA algo-
rithm tries to estimate from this matrix X the mixing matrix
A and therewith the demixing matrix W = A−1 such that
the demixed signals, i.e. the rows of the matrix

Y = WX,

are as independent as possible. Bearing in mind the usual
indeterminacies of ICA solutions, i.e. arbitrary scaling and
permutation, we can assume without loss of generality that



the mixing matrix A, the inverse of W , has unit-length col-
umns1, i.e.

A>

:jA:j = 1 for j ∈ {1, . . . , n}.

This ensures that the energy of each component Yj: is equal
to the sum of the energies of the proportions of Yj: in the
components of X , which can be written as A:jYj:, mathe-
matically speaking
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using for the first equality tr(CD) = tr(DC), for the second
the fact that the columns of A have unit length and for the
third that Yj:Y

>

j: is a scalar.

2.1. Partially destroying statistical structure

The statistical structure that most algorithms for ICA exploit
is non-Gaussianity, non-stationarity or non-whiteness—Car-
doso’s three easy routes to ICA (cf. [2]). In order to analyze
the reliability and grouping of the extracted components Y ,
we will now partially destroy their statistical structure by
adding noise, which is stationary Gaussian distributed and
independent in time, and examine how the unmixing results
change. More precisely, after adding the noise, the sig-
nals are more Gaussian, more stationary and spectrally more
flat. Note, that the noise level has to be adjusted for each
component separately: otherwise some components—the
weak ones—might loose all their statistical structure while
others—the strong ones—are not affected at all, which would
be undesirable since such a procedure would favor strong
components over weak components2.

Let E be the matrix that contains the square roots of the
energies of the extracted components on the diagonal—or
equivalently speaking their standard deviations,

E =
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Being aware of the fact that this matrix contains not exactly
energies, we call it nonetheless for simplicity energy matrix.

1We use the colon notation of Golub (see [6]), i.e. Ai: is the i-th row of
A and A:j is its j-th column.

2Equivalently, we could normalize the extracted signals to variance one
and add noise with the same noise level for each of the signals. We pursue
the slightly more complicated way that preserves the true variances in order
to avoid any alterations of the statistical structure.

Adding R instances of Gaussian white noise, written as
n× T matrices N (1), . . . , N (R), that have been adjusted by
the energy matrix E, to the extracted components Y pro-
vides us with R versions of Y , the statistical structure of
which has been partially destroyed:

Ỹ (1) = cos(σ)Y + sin(σ)EN (1)

...

Ỹ (R) = cos(σ)Y + sin(σ)EN (R).

0 ≤ σ ≤ π/2 is a parameter that can be visualized as a turn-
ing knob: σ = 0 adds no noise, i.e. all statistical structure is
preserved, σ = π/2 produces only noise, i.e. all statistical
structure is destroyed and in between some is kept, some is
destroyed. Since cos2(σ)+sin2(σ) = 1 it is guaranteed that
the noisy versions have in each component the same energy
as their colleagues in Y . Later in our experiments, we fix
σ = π/8 using empirical evidence (see Sec. 3.1).

2.2. Remixing and demixing again

The versions with the damaged statistical structure are mixed
by randomly generated mixing matrices B(1), . . . , B(R),
which have unit-length columns. Hereby, we obtain mix-
tures in which the initially extracted components keep their
energy. The additional mixing is important for algorithms,
that depend very much on the starting conditions, and it does
not cause any problems in the later analysis.

By applying the chosen ICA algorithm to the remixed
versions B(1)Ỹ (1), . . . , B(R)Ỹ (R) we obtain demixing ma-
trices V (1), . . . , V (R) and hereby demixed signals,

Z(1) = V (1)B(1)Ỹ (1)

...

Z(R) = V (R)B(R)Ỹ (R).

For these signals we are going to measure the angle to the
initially extracted components.

2.3. Constructing the relevant transformation

Transforming the remixed noisy versions B(r)Ỹ (r) to Z(r),
for r ∈ {1, . . . , R} can be seen as demixing the remixed,
initially extracted components B(r)Y but using only part of
the statistical structure of the signals.

In order to calculate the angle between a new component
Z

(r)
i: and an initially extracted component Yj: we have to

ensure two things:

1. We need to consider the transformation with respect
to the normalized signals

Y normalized = E−1Y
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Fig. 1. The estimated RMSAD correlates in all three cases with the true RMSAD. Note, that these scatter plots depend on the
choice of the noise parameter σ. All experiments have been carried out with σ = π/8.

each having variance one. Due to

Z = V (r)B(r)Y

= V (r)B(r)EY normalized

the transformation to proceed with is

V (r)B(r)E.

2. The transformed signals must be normalized as well,
i.e. we have to left-multiply V (r)B(r)E by a diagonal
matrix D(r) such that the rows of

U (r) = D(r)V (r)B(r)E

have unit-norm. We refer to this matrix as U (r).

The latter matrix describes the relevant transformation: the
angle between Z

(r)
i: and Yj: is the arcus cosine of the abso-

lute value of the ij-th entry of that matrix,

α
(r)
ij = arccos(|U (r)|ij),

which is some number between 0 and π/2. Note, that we
have to take the absolute value of each matrix entry, since
orientation does not matter for the calculation of the angle.

2.4. Estimating reliability and grouping structure

Using these angles, we compute statistics regarding the ini-
tially extracted components Y : to begin with we calculate
for each component the root mean-squared angle distance
to Yj: (abr. RMSAD):

vj =

√

√

√

√

1

R

R
∑

r=1

min
i

(α
(r)
ij )2 (1)

These values estimate the uncertainty of the extracted com-
ponents Y , as we will see in the experiments section. A
large RMSAD means unreliable, a small RMSAD means
the corresponding component is reliable.

Furthermore, we define a matrix that displays the group-
ing structure of the extracted signals, which we call group-
ing matrix:

Sjk =
1

R

R
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r=1
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Instead of taking the cosine of the angles we can directly
process the values of the transformation U (r),

S =
1

R

R
∑

r=1

|U (r)|>|U (r)|.

Intuitively speaking, the jk-th entry of |U (r)|>|U (r)| is large
if there is at least one component Z(r)

i: in which both signals
Yj: and Yk: concur with large proportions. If that is the case,
Yj: and Yk: contribute to the same subspace and are grouped
together.

Note, the possible block-structure of S can be automati-
cally obtained using the second eigenvector using ideas from
spectral clustering.

3. EXPERIMENTS

In order to validate our approach, we show empirically that
our method approximates true angle deviations, and we ap-
ply it to a toy data set, where we know the true signals and
finally to some real-world data. For all experiments, we use
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Fig. 2. This schematic view shows our method at a glance.

the same three algorithms, each going exclusively one of the
easy routes to ICA: as an example of an algorithm that ex-
ploits only non-Gaussianity we use JADE (see [3]), for non-
whiteness TDSEP (see [13]) and for non-stationarity a sim-
plistic variant of SEPAGAUS (see [12]), which we forced to
ignore all statistical information but non-stationarity3.

3.1. True versus estimated RMSAD

Comparing the reliability of signals obtained by different al-
gorithms requires to check whether the RMSAD estimated
by our method is correlated to the true one. The latter is
defined as the RMSAD of the projection directions (rows of
the demixing matrix) estimated from different instances of a
certain process. Our estimated RMSAD is given by Eq. (1),
which is an estimate from noisy versions of one specific in-
stance of the same process.

The coordinates of each point in Fig. 1 show the true
and estimated RMSAD for one particular process. In all
three plots we observe that these values are correlated. This
means that our estimate of the RMSAD for one particu-
lar instance is with high probability close to the true one.
Therefore it makes sense to compare reliability, expressed
as our estimated RMSAD, between different algorithms.

Note, that this finding depends very much on the choice
of σ which controls the signal to noise ratio. In all experi-

3The input parameters of SEPAGAUS allow us to specify that only one
positive frequency channel will be used.

ments reported here σ has been fixed to π/8.

3.2. Toy data

Running our method in a completely controlled environ-
ment enables us to easily evaluate our results. We consider
seven signals that show different combinations of statistical
structure:

non- non- non-
7 signals Gaussianity whiteness stationarity
Speech + + +
Music + + +
Cosine + + -
Sine + + -
Uniform noise + - -
Gaussian noise - - -
Gaussian noise - - -

These signals are mixed by a randomly chosen matrix and
analyzed with the three ICA algorithms mentioned above.
The results are visualized in Fig. 3: the RMSAD—depicted
in the right-most column—reveals which components have
been recovered reliably. However, the group structure can
not be directly infered from the RMSAD: the reliability bar-
plot using non-whiteness resembles the plot based on non-
stationarity, but the underlying group structure is very dif-
ferent, as can be seen in the grouping matrices. Further-
more, the statistical structure shown in the table above is
matched by those matrices: in the matrix for non-Gaussianity
we see five blocks that correspond to five subspaces. Both
two-dimensional subspaces—sine vs. cosine and Gaussian
noise vs. Gaussian noise—are examples where the corre-
sponding distributions are rotation-invariant. Besides, the
algorithm exploiting only non-whiteness is not able to dif-
ferentiate between the i.i.d. signals, as can be seen by the
three-dimensional block. Using only non-stationarity even
less structure can be identified. Note, that this finding does
not rank the three non-properties: it reflects only the statis-
tical properties of the investigated signals, which is exactly
what our method is intended to do.

3.3. Fetal ECG

As an example of a real-world data set, we present our re-
sults on the fetal ECG data (from [9]) which contains 2500
data points sampled at 500Hz with 8 electrodes located at
abdomen and thorax of a pregnant woman. The goal of
applying ICA algorithms to this data is to separate the fe-
tal heartbeat from the heartbeat of the mother. The uncer-
tainty, shown as the RMSAD in the right-most column of
Fig. 4, reveals that the non-Gaussianity based algorithm is
the method of choice for this dataset, very much in agree-
ment with Meinecke et al. [11]. The grouping matrices un-
derline this, because they clearly show that six independent
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Fig. 3. Shown are the results for the toy data. The structure revealed by the grouping matrix and by the RMSADs fits the
table in the explaining text. For the first row we used JADE, for the second row we used TDSEP with time-lags 0, . . . , 20, for
the third we used SEPAGAUS being restricted to one positive frequency channel.

signals have been found. Finally, looking at the estimated
waveforms in the first row of the figure, we see that channels
1, 2, 3 and 4 contain the mother’s heartbeat and channels 7
and 8 the fetal’s heartbeat. The other algorithms did not
extract those signals very well.

4. CONCLUSION

We presented a new method to assess the reliability of ICA
components that can be easily applied to any ICA algo-
rithm. In contrast to our previous work that uses bootstrap
(cf. [11]), there is not yet a developed mathematical theory
supporting this approach. However, we showed empirically
that our estimator is able to approximate the true RMSAD.
Controlled toy experiments and experiments with fetal ECG
data underlines the usefulness of our approach.

Interesting open questions are: can we improve on our
results by choosing the signal to noise ratio more cleverly?
How does our method react in an overfitting-scenario (cf. the

work in [8])? Future work will also strive for a better under-
standing of the theoretical properties of our approach.
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